Оптимизация создания новых лекарств с помощью нейросети

9jchjznkhpc1dexyako20dl3n7b3rf66Сотрудники биологического факультета МГУ провели исследование по предсказанию аффинности связывания в белок-белковых комплексах с применением технологий искусственного интеллекта.

Результаты исследования опубликованы в журнале PROTEINS: Structure, Function, and Bioinformatics». Работа, посвящённая предсказанию аффинности связывания в комплексах RBD-ACE2, принята к публикации в журнал «Биофизика».

Изучение структурных особенностей белок-белковых взаимодействий важно для понимания сложных клеточных процессов и многих заболеваний, а также может служить основой для разработки лекарственных препаратов, способных к модификации данных взаимодействий.

Одной из ключевых задач в этом направлении является предсказание энергии связывания в белковых комплексах. Для учёта большого числа факторов, оказывающих влияние на энергию (или, иначе, аффинность) связывания, необходима разработка нелинейных алгоритмов, причем одними из наиболее перспективных методов предсказания в настоящее время являются подходы искусственного интеллекта, включающие в себя применение нейросетевых алгоритмов.

В ходе исследования был разработан алгоритм, основанный на трёхмерной свёрточной нейронной сети, предсказывающий значение константы диссоциации для белок-белковых комплексов на основе множества пар межатомных расстояний в белках-партнёрах.

По итогам тестирования на независимых наборах данных полученная модель превзошла все существующие аналоги в предсказании аффинности связывания. Также обученная модель показала высокие результаты в предсказании аффинности связывания в комплексах RBD-домена S-белка вируса SARS-CoV-2 (включая мутантные формы) с ангиотензинпревращающим ферментом 2 (ACE2), превосходящие альтернативные подходы к оценке взаимодействий.

«Полученные результаты свидетельствуют о возможности применения разработанного алгоритма для оценки связывания в новых, экспериментально малоизученных белок-белковых комплексах, что значительно сократит время и ресурсы, затрачиваемые на начальные этапы разработки лекарственных препаратов, основанных на белок-белковых взаимодействиях, к которым, в частности, относятся и противоопухолевые препараты», — пояснила автор исследования Елизавета Богданова, аспирант кафедры биоинженерии биологического факультета МГУ, выпускница курса для молодых учёных МГУ «Нейронные сети и их применение в научных исследованиях», поддержанного фондом «Интеллект».

Применение свёрточного нейросетевого алгоритма позволило проанализировать информацию о межатомных взаимодействиях, реализуемых на разных расстояниях между функциональными группами, сохранив особенности пространственной организации белок-белковых комплексов. Таким образом, для предсказания используется наиболее полная информация о взаимодействиях между белками.

Источник: Официальный канал РАН.

Поделиться